Moonwatch

In 1965, as the space race between the United States and the Soviet Union was hotting up, officials at NASA realised that they did not have “space rated” wristwatch that could be used for the upcoming Project Gemini. Given that the program was slated to include an EVA or space walk, there was an obvious need for a watch that could withstand exposure to vacuum and other rigours of spaceflight. In addition to being able to keep good time under such conditions, the watch would have to incorporate a chronograph or stop-watch function, so astronauts could see at a glance how long they had spent outside their spacecraft and to help carry out other tasks that required accurate timing.

Rather than go through the time consuming procedure of inviting bids for a “space watch”, NASA decided to send a couple of engineers to out to downtown Houston with instructions to procure a variety of off-the-shelf chronographs for testing. The tests included exposure to extreme temperatures, vacuum, intense humidity, shock, acceleration, pressure and vibration. At the end of the tests, NASA had a clear winner as the watch most suitable for spaceflight: the Omega Speedmaster.

The Speedmaster was first introduced by in 1957 and utilised the Lemania 2310 (AKA Omega 321) manual-wind movement. It is often stated that NASA specified a manual-wind movement because they thought automatic (“self-winding”) movements would not function in zero-gravity conditions, but this is incorrect on two counts. Firstly an automatic works by inertia and is not dependent on gravity; secondly the simple reason NASA selected a manual-wind chronograph is that at the time that was the only type available. The first automatic chronograph movement – the Zenith el Primero – did not come into use until near the end of the decade. However it is likely that in the cramped conditions of a Gemini or Apollo spacecraft, there would be insufficient activity to keep an automatic fully wound and a manual-wind would be more suitable.

On 3 June 1965, Gemini 4 pilot Edward White became the first US astronaut to make a spacewalk. He was wearing an Omega Speedmaster, strapped to the outside of his spacesuit with a Velcro strap. Curiously it was not until almost a year later that Omega finally learned the use to which NASA had been putting their watches. As might be expected, they wasted little time in cashing in and photographs of White’s spacewalk were soon featuring in their advertising literature. The watch itself was renamed the Speedmaster Professional, but its finest hour was yet to come.

Early on the morning of 21 July 1969, Buzz Aldrin stepped out onto the surface of the Moon wearing a Speedmaster Professional, which thus became the first watch to be worn on the Moon. Earlier, Neil Armstrong had had to leave his own watch in the Eagle lunar module after the lander’s onboard chronometer developed a malfunction. Sadly this historic watch was later stolen while on loan to the Smithsonian and has never been recovered.

In April the following year a Speedmaster Professional was used to time a crucial engine burn aboard the crippled Apollo XIII during the desperate and ultimately successful endeavour to return the spacecraft safely to Earth.

Meanwhile feeling was growing that an American watch should be used on NASA moon missions and the US-owned Bulova company lobbied the White House for their watches to be used instead of the “Speedy Pro”. Eventually NASA was persuaded to test a fresh batch of watches, including a specially-manufactured Bulova chronograph, but the Omega again came out on top with the Bulova stopping several times during testing.

By now, not only NASA was equipping its astronauts with the Speedmaster Professional. In 1975, when an Apollo spacecraft rendezvoused with a Soviet Soyuz in Earth orbit, both crews were wearing what had by now become known as the Moonwatch.

In 1978 NASA held a fresh series of tests ahead of the Space Shuttle program. Once again the Speedmaster Professional triumphed. The watch had by now received an updated movement, the Lemania 1873 (AKA Omega 861), which featured a shuttle/cam system rather than a column-wheel. The former design is simpler and thus is cheaper to both manufacture and service, but it yields nothing in terms of performance and reliability. The 1873 is again a manual-wind movement.

Externally however the Speedmaster Professional has changed very little in over half a century, even retaining its old-fashioned Hessalite (plexiglass) crystal in preference to a modern scratch-resistant sapphire crystal. This has been at the request of NASA. Plexiglass scratches quite easily, but it is virtually indestructible. By contrast, a sharp blow can shatter a sapphire crystal. Having sapphire fragments floating about inside the zero-g environment of a spacecraft is obviously not a good idea! A sapphire version, also featuring a sapphire display back, is available at extra cost but many enthusiasts prefer the Hessalite model, which is the only flight-qualified version.

The Speedy Pro is certainly not the only watch to go into space (and was probably not even the only watch worn on the Moon – contra Omega’s website), but even now it is the only watch permitted to be used for EVAs from the International Space Station or from the Space Shuttle. The Casio G-Shock – a watch almost as iconic as the Speedy – is routinely worn aboard the ISS, but because their batteries may explode in a vacuum, they cannot be used for spacewalking.

Who knows, the Omega Speedmaster Professional may even eventually become known as the Marswatch.

© Christopher Seddon 2009

Advertisements

The rise and fall of the quartz watch

To those of us old enough to remember it, the autumn of 1973 was not perhaps what Charles Dickens would have classified as “the best of times”. War had broken out in the Middle East, the Watergate scandal was making life difficult for the newly-re-elected Richard Nixon and the late and thoroughly unlamented General Pinochet had just seized power in Chile. Britain had begun the year joining the EEC (the forerunner of the EU) but was now in the grip of the Three Day Week as the confrontation between the Tory Prime Minister Edward Heath and the miners showed no sign of abating. Inflation was spiralling out of control and recession seemed inevitable.

It would have been about that time that I saw in the window of a jewellers shop in Wendover in Buckinghamshire something that caught my imagination – a Seiko quartz watch. I knew from the encyclopaedia that we had had at home since my early childhood that a quartz clock was an extremely accurate timepiece, but it was completely news to me that somebody had managed to shrink the complex electronics to the size of something that could be fitted into a wristwatch. In fact the first quartz watches appeared in Japan in 1969, but it obviously took time for them to make their way to the Home Counties (it must also be remembered that wide-spread access to the internet was still a quarter of a century off).

The watch had a claimed accuracy of 1 minute per year, which was quite sensational because even a well-regulated mechanical watch could – and still can – be off by that amount in a few days. It cost £100 – a considerable sum of money for the time. Soon after Seiko began marketing their watches very actively in the UK with the advertising tag “Some day all watches will be made this way”.

Rarely if ever has an advertising slogan proved more accurate; within a decade the mechanical wristwatch had all but disappeared from the windows of high street retailers. The first cheap quartz watches appeared around the second half of 1975. Unlike the analogue Seiko, these watches featured digital displays. The first models used light emitting diode (LED) displays of the type used by the electronic calculators of that time (calculators were also considered cool cutting-edge gadgets in the mid ‘70s) but had the major disadvantage that it was necessary to press a button in order to read off the time (I possessed one made by Samsung – a company virtually unknown in the West at the time). This type of display soon gave way to the now-familiar liquid crystal display (LCD) still found in brands like the ever-popular Casio G-Shock. A watch where one can read of the time as – say – 1:52 PM rather than “just after ten to two” might seem to be at a major advantage, but here the quartz revolution stuttered slightly. Most people actually preferred the older analogue displays and these days the majority of wristwatches have this type of display.

For the Swiss watch industry, quartz represented a major challenge. What happened next is best considered through the very different directions taken by two of Switzerland’s most prominent watchmakers – Rolex and Omega. Omega embraced the new technology full on. In 1974 they launched the Megaquartz Marine Chronometer, which remains to this day the most accurate wristwatch ever made. But – not helped by the adverse economic conditions of the time – Omega struggled and only within the last decade has the brand begun to regain its former strength. Rolex for their part did absolutely nothing. They carried on making exactly the same models – and they kept on selling! This policy was successful – today Rolex is by far the world’s largest producer of luxury wristwatches. It was many years before they even bothered to produce a quartz watch – the Oysterquartz. But despite an accuracy of 5 seconds per year – not far off the Omega Megaquartz – it was not a success and was eventually discontinued.

Round about the end of the 1980s the tide turned as more and more purchasers of high-end watches bean to reject quartz in favour of traditional mechanicals. Why one might ask, when a quartz watch is so much more accurate? There are a number of possible reasons – one obvious advantage a mechanical watch has over its quartz counterpart is that it never needs a battery. But battery-less technologies such as eco-drive (solar) and kinetic (rotor-driven dynamo) have largely failed to penetrate the high-end market. And in any case changing the battery every few years is far cheaper and less time-consuming than the regular servicing mechanical watches require to keep them in working order.

The answer is to some extent to be found with the so-called “display back”. Many mechanical watches now have a transparent back, so the movement can be viewed. Look at the intricate and exquisitely-finished movement in a Patek Phillippe or a Lange and compare it with an electronic chip. No contest! Even the nicely-decorated UNITAS hand-wound movements found in many mid-range watches such as the Stowa Marine Original beats a quartz movement hands down in the beauty stakes. To be blunt, one is a micro-machine, a marvel of precision engineering; the other is nothing more than an electrical appliance.

Today the vast majority of luxury watches are mechanical. Most of the high-end quartz watches, such as the Omega Megaquartz, the Rolex Oysterquartz and the Longines Conquest VHP, have long since ceased production. The Citizen Chronomaster, rated to within 5 seconds a year, remains a current model but it is not widely available outside of Japan. The advent of radio control, whereby a watch can synchronize itself to the time signals from Rugby, Frankfurt, Colorado etc has meant that super-accurate quartz movements are now largely redundant, virtually killing off innovation in the field. Most modern quartz watches, when not synchronized to a time signal, are actually far less accurate than the Seiko I saw in that jeweller’s shop window almost three and a half decades ago.

© Christopher Seddon 2008